Sequential Design of Experiment for Sparse Polynomial Chaos Expansions

Autor: Stefano Marelli, Bruno Sudret, Noura Fajraoui
Rok vydání: 2017
Předmět:
Zdroj: SIAM/ASA Journal on Uncertainty Quantification. 5:1061-1085
ISSN: 2166-2525
Popis: Uncertainty quantification (UQ) has received much attention in the literature in the past decade. In this context, sparse polynomial chaos expansions (PCEs) have been shown to be among the most promising methods because of their ability to model highly complex models at relatively low computational costs. A least-square minimization technique may be used to determine the coefficients of the sparse PCE by relying on the so-called experimental design (ED), i.e., the sample points where the original computational model is evaluated. An efficient sampling strategy is then needed to generate an accurate PCE at low computational cost. This paper is concerned with the problem of identifying an optimal ED that maximizes the accuracy of the surrogate model over the whole input space within a given computational budget. A novel sequential adaptive strategy where the ED is enriched sequentially by capitalizing on the sparsity of the underlying metamodel is introduced. A comparative study between several state-of-the...
Databáze: OpenAIRE