BOOLEAN ALGEBRAS IN AST
Autor: | Klaus Schumacher |
---|---|
Rok vydání: | 1992 |
Předmět: |
Discrete mathematics
Logic Two-element Boolean algebra Computer Science::Computational Complexity Boolean algebras canonically defined Complete Boolean algebra Boolean algebra Combinatorics symbols.namesake TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Interior algebra ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION symbols Free Boolean algebra Boolean expression Stone's representation theorem for Boolean algebras Mathematics |
Zdroj: | Zeitschrift für Mathematische Logik und Grundlagen der Mathematik. 38:373-382 |
ISSN: | 1521-3870 0044-3050 |
DOI: | 10.1002/malq.19920380135 |
Popis: | In this paper we investigate Boolean algebras and their subalgebras in Alternative Set Theory (AST). We show that any two countable atomless Boolean algebras are isomorphic and we give an example of such a Boolean algebra. One other main result is, that there is an infinite Boolean algebra freely generated by a set. At the end of the paper we show that the sentence “There is no non-trivial free group which is a set” is consistent with AST. |
Databáze: | OpenAIRE |
Externí odkaz: |