Solar electric propulsion for human mars missions
Autor: | Franklin R. Chang Díaz, Les Johnson, William G. Johnson, Giancarlo Genta, John A. Carr, P. Federica Maffione |
---|---|
Rok vydání: | 2019 |
Předmět: |
020301 aerospace & aeronautics
Spacecraft Ion thruster business.industry Computer science Photovoltaic system Aerospace Engineering 02 engineering and technology NASA Deep Space Network Mars Exploration Program Exploration of Mars 01 natural sciences 0203 mechanical engineering Electrically powered spacecraft propulsion 0103 physical sciences Electric power Aerospace engineering business 010303 astronomy & astrophysics |
Zdroj: | Acta Astronautica. 160:183-194 |
ISSN: | 0094-5765 |
Popis: | While solar electric propulsion (SEP) is being widely considered for cargo transport to Mars, its value for propelling fast human missions is often viewed as marginal. This conclusion is driven by the high electric power requirement (multi megawatts) of a fast human spacecraft, coupled to the low power density of traditional solar arrays. For these applications, nuclear electric propulsion (NEP) appears to provide a better electric alternative. However, recent progress in the field of thin film photovoltaic cells and large deployable structures may, at least in the short-term, challenge this conclusion. Although ultimately NEP systems might very well become the mainstay of fast human deep space transport, we examine the human SEP option as an attractive intermediate path on this journey, one that capitalizes on the rapid evolution of the solar array technology being experienced today. We investigated the challenges of building suitably large, lightweight, solar arrays to produce the required electric power for both cargo and human interplanetary spacecraft and examined the advantages of such SEP architectures in the context of a long-stay human Mars mission. Within this framework, we present some conclusions regarding the prospects for this technology. |
Databáze: | OpenAIRE |
Externí odkaz: |