Transcendence of the values of certain series with Hadamard's gaps
Autor: | Taka Aki Tanaka |
---|---|
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Archiv der Mathematik. 78:202-209 |
ISSN: | 1420-8938 0003-889X |
DOI: | 10.1007/s00013-002-8237-x |
Popis: | Transcendence of the number \( \sum_{k=0}^\infty \alpha^{r_k} \), where \( \alpha \) is an algebraic number with 0 1 and \( \{r_k\}_{k\geqq0} \) is a sequence of positive integers such that \( \lim_{k\to\infty}\, r_{k+1}/r_k = d \in \mathbb{N}\, \backslash \{1\} \), is proved by Mahler's method. This result implies the transcendence of the number \( \sum_{k=0}^\infty \alpha^{kd^k} \). |
Databáze: | OpenAIRE |
Externí odkaz: |