Popis: |
In data analysis, items were mostly described by a set of characteristics called features, in which each feature contains only single value for each object. Even so, in existence, some features may include more than one value, such as a person with different job descriptions, activities, phone numbers, skills and different mailing addresses. Such features may be called as multi-valued features, and are mostly classified as null features while analyzing the data using machine learning and data mining techniques. In this paper, it is proposed a proximity function to be described between two substances with multi-valued features that are put into effect for clustering.The suggested distance approach allows iterative measurements of the similarities around objects as well as their characteristics. For facilitating the most suitable multi-valued factors, we put forward a model targeting at determining each factor’s relative prominence for diverse data extracting problems. The proposed algorithm is a partition clustering strategy that uses fuzzy c- means clustering for evolutions, which is using the novel member ship function by utilizing the proposed similarity measure. The proposed clustering algorithm as fuzzy c- means based Clustering of Multivalued Attribute Data (FCM-MVA).Therefore this becomes feasible using any mechanisms for cluster analysis to group similar data. The findings demonstrate that our test not only improves the performance the traditional measure of similarity but also outperforms other clustering algorithms on the multi-valued clustering framework. |