Neimark-Sacker, flip and transcritical bifurcation in a symmetric system of difference equations with exponential terms

Autor: Chrysoula Mylona, Garyfalos Papaschinopoulos, C. J. Schinas
Rok vydání: 2021
Předmět:
DOI: 10.22541/au.161338138.88313798/v1
Popis: In this paper, we study the conditions under which the following symmetric system of difference equations with exponential terms: \[ x_{n+1} =a_1\frac{y_n}{b_1+y_n} +c_1\frac{x_ne^{k_1-d_1x_n}}{1+e^{k_1-d_1x_n}},\] \[ y_{n+1} =a_2\frac{x_n}{b_2+x_n} +c_2\frac{y_ne^{k_2-d_2y_n}}{1+e^{k_2-d_2y_n}}\] where $a_i$, $b_i$, $c_i$, $d_i$, $k_i$, for $i=1,2$, are real constants and the initial values $x_0$, $y_0$ are real numbers, undergoes Neimark-Sacker, flip and transcritical bifurcation. The analysis is conducted applying center manifold theory and the normal form bifurcation analysis.
Databáze: OpenAIRE