Weightedl1norms for matrices
Autor: | Moshe Goldberg, Richard Arens |
---|---|
Rok vydání: | 1996 |
Předmět: | |
Zdroj: | Linear and Multilinear Algebra. 40:229-234 |
ISSN: | 1563-5139 0308-1087 |
DOI: | 10.1080/03081089608818440 |
Popis: | Let W =(Wij ) be a fixed m × n weight matrix, and let the W-weighied l1 , norm on Cm×n be defined by Given weight matrices U,V,W, of orders m × r r × n and m × n, respectively, we begin by proving that a constant μ > 0 satisfies In the second part of this note we restrict attention to a single weighted l1 norm on C n×n ,and show that We conclude that may be quadrative without being multiplicative on C n×n . |
Databáze: | OpenAIRE |
Externí odkaz: |