Dependent Wild Bootstrap for the Empirical Process

Autor: Paul Doukhan, Gabriel Lang, Michael H. Neumann, Anne Leucht
Rok vydání: 2015
Předmět:
Zdroj: Journal of Time Series Analysis. 36:290-314
ISSN: 0143-9782
Popis: In this paper, we propose a model-free bootstrap method for the empirical process under absolute regularity. More precisely, consistency of an adapted version of the so-called dependent wild bootstrap, that was introduced by Shao (2010) and is very easy to implement, is proved under minimal conditions on the tuning parameter of the procedure. We apply our results to construct confidence intervals for unknown parameters and to approximate critical values for statistical tests. A simulation study shows that our method is competitive to standard block bootstrap methods in finite samples.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje