Asymptotic completeness for superradiant Klein–Gordon equations and applications to the De Sitte–Kerr metric
Autor: | Dietrich Häfner, Christian Gérard, Vladimir Georgescu |
---|---|
Rok vydání: | 2017 |
Předmět: |
Class (set theory)
Angular momentum Field (physics) 010308 nuclear & particles physics Applied Mathematics General Mathematics 010102 general mathematics Kerr metric Superradiance 01 natural sciences General Relativity and Quantum Cosmology symbols.namesake De Sitter universe Completeness (order theory) 0103 physical sciences symbols 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons Klein–Gordon equation Mathematical physics Mathematics |
Zdroj: | Journal of the European Mathematical Society. 19:2371-2444 |
ISSN: | 1435-9855 |
DOI: | 10.4171/jems/720 |
Popis: | We show asymptotic completeness for a class of superradiant Klein-Gordon equations. Our results are applied to the Klein-Gordon equation on the De Sitter Kerr metric with small angular momentum of the black hole. For this equation we obtain asymptotic completeness for fixed angular momentum of the field. |
Databáze: | OpenAIRE |
Externí odkaz: |