Autor: |
Jian Sen Gao, Lingling Li, Jun Hao Li, Cai Hong Zhu |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
Applied Mechanics and Materials. :842-847 |
ISSN: |
1662-7482 |
DOI: |
10.4028/www.scientific.net/amm.300-301.842 |
Popis: |
The wind speed forecast is the basis of the wind power forecast. The wind speed has the characteristics of random non-smooth so obviously that its precise forecast is extremely difficult. Therefore, a forecasting method based on the theory of chaotic phase-space reconstruction and SVM was put forward in this paper and a forecasting model of Chaotic Support Vector Machine was built. In order to improve the precision and generalization ability, the key parameters in the phase space reconstruction and the key parameters of SVM were carried out joint optimization by using particle swarm algorithm in the paper. Then the optimal parameters were brought into the forecasting model to forecast short-term wind speed. The above method was applied to wind speed forecast of a wind farm in Inner Mongolia, China. In the experiments of computer simulation, the absolute percentage error of forecasting results was only 12.51%, which showed this method was effective for short-term wind speed forecast. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|