A random search method for finding ‘K ≥ 2’ number of ranked optimal solution to an assignment problem
Autor: | Ali Al-Hasani, Masar Al-Rabeeah, Andrew Eberhard, Santosh Kumar |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Physics: Conference Series. 1490:012063 |
ISSN: | 1742-6596 1742-6588 |
DOI: | 10.1088/1742-6596/1490/1/012063 |
Popis: | A need for an optimal solution for a given mathematical model is well known and many solution approaches have been developed to identify efficiently an optimal solution for a given situation. For example, one such class of mathematical models with industrial applications have been classified as mathematical programming models (MPM). The main idea behind these models is to find the optimal solution described by those models and interpret the solution back with respect to the given industrial situation. However, the same is not true for a ‘K’number of ranked optimal solutions, where K ≥ 2. Mathematically, the Kth best solution, K ≥ 2, deals with determination of the 2nd, 3rd, 4th or in general the Kth best solution. This Kth best solution, K ≥ 2, suddenly becomes much more demanding with respect to computational requirements, which increases with the increase in the value of K. This paper first identifies difficulties associated with determination of ranked solutions and later develops a random search method to find ranked optimal solutions in the case of an assignment problem. We test the efficiency of the proposed approach by executing the random search method on a number of different size assignment problems. |
Databáze: | OpenAIRE |
Externí odkaz: |