Machine-Learning-Based Prediction of Methane Adsorption Isotherms at Varied Temperatures for Experimental Adsorbents

Autor: Youn Sang Bae, Seo Yul Kim, Seung Ik Kim
Rok vydání: 2020
Předmět:
Zdroj: The Journal of Physical Chemistry C. 124:19538-19547
ISSN: 1932-7455
1932-7447
DOI: 10.1021/acs.jpcc.0c01757
Popis: Metal–organic frameworks (MOFs) are crystalline materials and one of the optimal materials for large-scale grand canonical Monte Carlo (GCMC) simulations. Recently, there have been trials for apply...
Databáze: OpenAIRE