MESOCLOSURES – increasing realism in mesocosm studies of ecosystem functioning
Autor: | Saija Lähteenmäki, Gustavo Schiffler, Eleanor M. Slade, Julio Louzada, Jos Barlow, Tomas Roslin, Bess Hardwick |
---|---|
Rok vydání: | 2015 |
Předmět: |
0106 biological sciences
biology Ecology 010604 marine biology & hydrobiology Ecological Modeling Community structure 15. Life on land biology.organism_classification 010603 evolutionary biology 01 natural sciences Grazing pressure Mesocosm Habitat Temperate climate Biological dispersal Ecosystem Ecology Evolution Behavior and Systematics Dung beetle |
Zdroj: | Methods in Ecology and Evolution. 6:916-924 |
ISSN: | 2041-210X |
DOI: | 10.1111/2041-210x.12367 |
Popis: | Summary 1.Experimental studies linking community composition to functioning are typically confined to small and closed micro- or mesocosms. Such restricted conditions may affect both species’ biology and their environment. Yet, targeting simple features in the behaviour of species may circumvent these constraints. Focusing on ecological functions provided by dung beetles, we test whether large, open-top cages – MESOCLOSURES – will intercept the flight trajectories of beetles, thereby allowing manipulation of local community composition. 2.MESOCLOSURES were built in both tropical forest (Brazil) and temperate grasslands (Finland), thus testing their general efficiency. Within the respective environments, we varied different aspects of MESOCLOSURE design: in the tropical forest, we examined the impact of MESOCLOSURE dimensions on exclusion efficiency, whereas in the temperate grassland, we assessed the potential for selectively excluding and including community members by different mesh sizes. In the temperate environment, we also went from method to application, using MESOCLOSURES to relate community composition to functioning under two simulated grazing regimes. 3.MESOCLOSURES allowed efficient manipulation of dung beetle communities, maintaining dung beetle densities at intended levels in both temperate and tropical systems. In the tropics, the smallest cages (1 × 1 m) offered the highest contrast in beetle densities inside vs. outside of the fence, whereas the largest cages (9 × 9 m) offered the lowest. Nonetheless, densities inside cages never exceed one-fifth of those outside. At the temperate site, manipulations of community structure through mesh size yielded significant differences in functioning and suggested an interaction between small dung-dwelling species and large tunnelling species. Within cages, higher grazing was reflected in augmented dung removal. 4.We conclude that MESOCLOSURES can be effectively used to study dung beetle functions across habitats and latitudes. As applied insights, the present study adds resolution to the significance of different functional groups of dung beetles and shows that grazing pressure may have an important impact on the ecosystem functions that they provide. Overall, this study suggests that targeted manipulation of dispersal may offer new solutions for linking fauna to ecosystem functions with minimal impact on the processes measured. |
Databáze: | OpenAIRE |
Externí odkaz: |