Controlling the microstructure of lyophilized porous biocomposites by the addition of ZnO-doped bioglass
Autor: | Agnieszka Jastrzebska, Andrzej Olszyna, L. Ciołek, Piotr Taźbierski, M. Biernat, Zbigniew Jaegermann, Paulina Tymowicz-Grzyb |
---|---|
Rok vydání: | 2017 |
Předmět: |
Marketing
chemistry.chemical_classification Materials science Simulated body fluid Composite number 02 engineering and technology Polymer 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Microstructure 01 natural sciences Apatite 0104 chemical sciences Granulation chemistry visual_art Materials Chemistry Ceramics and Composites visual_art.visual_art_medium Composite material Biocomposite 0210 nano-technology Porosity |
Zdroj: | International Journal of Applied Ceramic Technology. 14:1107-1116 |
ISSN: | 1546-542X |
DOI: | 10.1111/ijac.12739 |
Popis: | The study presents the results of the study on porous composite biomaterials obtained using lyophilization method based on polymer solutions: chitosan solution, sodium alginate solution, or polylactide solution, and ZnO-doped bioglass from CaO-SiO2-P2O5 system. The properties of zinc ions were used, which have bactericidal, immune-stimulating, and tissue-regenerating functions in the organism. The effects of the polymer type, granulation, and bioglass amount, as well as the amount of solvent on composite microstructure, were studied. SEM-EDS technique was used to visualize and describe the surface results occurring after incubation of composite in the Simulated Body Fluid (SBF). The selected method of preparation, used substrates, and the process conditions resulted in porous composites of the open, connected pore structure. It was proved that composite microstructure may be controlled by the appropriately selected amount of bioglass in relation to the polymer and its appropriate grain sizes. The morphology of the obtained composites is also affected by the amount of the solvent in lyophilizated dispersions. It was proved that bioactivity in composite material is induced by bioglass because after SBF incubation the surface layer is enriched with Ca and P, what may lead to a gradual formation of apatite layer. The obtained results enabled selection of the composites for further in vitro studies concerning cytotoxicity and antibacterial activity. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |