AdaGrad Gradient Descent Method for AI Image Management

Autor: Peng Yang, Jen-Kuang Fang, Wen-Long Lu, Cher-Min Fong, Chien-Wei Chang, Chao-Kai Hung
Rok vydání: 2020
Předmět:
Zdroj: ICCE-TW
DOI: 10.1109/icce-taiwan49838.2020.9258085
Popis: In this study, we used AdaGrad gradient descent method in optimizer for image deep learning, and compare with Adam gradient descent methods. After processing over six thousand huge database of through silicon via images, AdaGrad has shown a fast convergence and less generalization errors than Adam. The results help Artificial Intelligence for making the management of image judgment more accurate and faster.
Databáze: OpenAIRE