On a Finite Group with Restriction on Set of Conjugacy Classes Size
Autor: | I. B. Gorshkov |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Bulletin of the Malaysian Mathematical Sciences Society. 43:2995-3005 |
ISSN: | 2180-4206 0126-6705 |
DOI: | 10.1007/s40840-019-00843-4 |
Popis: | The greatest power of a prime p dividing the natural number n will be denoted by $$n_p$$. For a set of primes $$\pi $$ and a natural number n we will denote $$n_{\pi }=\prod _{p\in \pi }n_p$$. Let G be a finite group with trivial center, and $$p,q>5$$ be distinct prime divisors of |G|. We prove that if for every nonunity conjugacy classes size $$\alpha $$, it is true that $$\alpha _{\{p,q\}}\in \{p^n,q^m,p^nq^m\}$$, where n and m depend only on p and q, then $$|G|_{\{p,q\}}=p^nq^m$$, and $$C_G(g)\cap C_G(h)=1$$ for every p-element g and every q-element h. |
Databáze: | OpenAIRE |
Externí odkaz: |