Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
Autor: | I. A. Shakirov |
---|---|
Rok vydání: | 2021 |
Předmět: |
Statistics and Probability
Mathematics::Functional Analysis Mathematics::Dynamical Systems Logarithm Approximations of π Applied Mathematics General Mathematics 010102 general mathematics Mathematics::Classical Analysis and ODEs Lagrange polynomial Lebesgue integration 01 natural sciences 010305 fluids & plasmas symbols.namesake Argument 0103 physical sciences symbols Applied mathematics 0101 mathematics Constant (mathematics) Mathematics Trigonometric interpolation |
Zdroj: | Journal of Mathematical Sciences. 252:445-452 |
ISSN: | 1573-8795 1072-3374 |
Popis: | Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments. |
Databáze: | OpenAIRE |
Externí odkaz: |