Popis: |
By using first-principle calculations, we have systematically investigated the structural, electronic and magnetic properties of six 3d transition metals (TM=Sc, Ti, V, Cr, Mn and Fe) linear monoatomic chains adsorbed on the (5,5) single-walled beryllium oxide nanotube (BeONT) at five different sites. The results indicate that all TM chains can be spontaneously adsorbed on the outer surface of the BeONT; and the O site is the most stable adsorption site for all TM chains with the highest binding energies, while the adsorption on the Z site is unstable. The dispersion character occurs in energy band curves of stable TM/BeONT systems and brings about the band gap disappearance in comparison with that of pure (5,5) BeONT. Interestingly, the Ti/BeONT and V/BeONT systems at O site show half-metal character; Cr at O site and Fe at O site as well as V at H site have high spin polarization P ( E F ) and these adsorbed systems are usable in spintronics devices. The TM chain adsorbed BeONT systems exhibit high stability, promising electronic properties and high magnetic moments, which may be useful for a wide variety of next-generation nanoelectronic device components. |