A Hybrid Genetic Algorithm, Simulated Annealing and Tabu Search Heuristic for Vehicle Routing Problems with Time Windows

Autor: Sam R. Thangiah
Rok vydání: 2019
Předmět:
Zdroj: Practical Handbook of Genetic Algorithms ISBN: 9780429128356
DOI: 10.1201/9780429128356-9
Popis: The Vehicle Routing Problem with Time Windows (VRPTW) involves servicing a set of customers, with earliest and latest time deadlines, with varying demands using capacitated vehicles with limited travel times. The objective of the problem is to service all customers while minimizing the number of vehicles and travel distance without violating the capacity and travel time of the vehicles and customer time constraints. In this paper we describe a λ-interchange mechanism that moves customers between routes to generate neighborhood solutions for the VRPTW. The λ-interchange neighborhood is searched using Simulated Annealing and Tabu Search strategies. The initial solutions to the VRPTW are obtained using the Push-Forward Insertion heuristic and a Genetic Algorithm based sectoring heuristic. The hybrid combination of the implemented heuristics, collectively known as the GenSAT system, were used to solve 60 problems from the literature with customer sizes varying from 100 to 417 customers. The computational results of GenSAT obtained new best solutions for 40 test problems. For the remaining 20 test problems, 11 solutions obtained by the GenSAT system equal previously known best solutions. The average performance of GenSAT is significantly better than known competing heuristics. For known optimal solutions to the VRPTW problems, the GenSAT system obtained the optimal number of vehicles.
Databáze: OpenAIRE