Wiener index of quadrangulation graphs

Autor: Addisu Paulos, Chuanqi Xiao, Ervin Győri
Rok vydání: 2021
Předmět:
Zdroj: Discrete Applied Mathematics. 289:262-269
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.11.016
Popis: The Wiener index of a graph G , denoted W ( G ) , is the sum of the distances between all non-ordered pairs of vertices in G .E. Czabarka, et al. conjectured that for a simple quadrangulation graph G on n vertices, n ≥ 4 , W ( G ) ≤ 1 12 n 3 + 7 6 n − 2 , n ≡ 0 ( m o d 2 ) , 1 12 n 3 + 11 12 n − 1 , n ≡ 1 ( m o d 2 ) . In this paper, we confirm this conjecture.
Databáze: OpenAIRE