Wiener index of quadrangulation graphs
Autor: | Addisu Paulos, Chuanqi Xiao, Ervin Győri |
---|---|
Rok vydání: | 2021 |
Předmět: |
Combinatorics
Conjecture 010201 computation theory & mathematics Applied Mathematics 0211 other engineering and technologies Discrete Mathematics and Combinatorics 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology Wiener index 01 natural sciences Graph Mathematics |
Zdroj: | Discrete Applied Mathematics. 289:262-269 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2020.11.016 |
Popis: | The Wiener index of a graph G , denoted W ( G ) , is the sum of the distances between all non-ordered pairs of vertices in G .E. Czabarka, et al. conjectured that for a simple quadrangulation graph G on n vertices, n ≥ 4 , W ( G ) ≤ 1 12 n 3 + 7 6 n − 2 , n ≡ 0 ( m o d 2 ) , 1 12 n 3 + 11 12 n − 1 , n ≡ 1 ( m o d 2 ) . In this paper, we confirm this conjecture. |
Databáze: | OpenAIRE |
Externí odkaz: |