Aluminothermic Reduction Process Under Nitrogen Gas Pressure for Preparing High Nitrogen Austenitic Steels
Autor: | G. A. Dorofeev, Eugeny Kuzminykh, V. I. Lad’yanov, Vladislav Karev, Oleg Goncharov, Alexey Lubnin, I. V. Sapegina, M. I. Mokrushina |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Metallurgical and Materials Transactions B. 50:632-640 |
ISSN: | 1543-1916 1073-5615 |
DOI: | 10.1007/s11663-018-1499-x |
Popis: | The aluminothermic reduction casting process under nitrogen gas pressure to make austenitic Cr-Mn-N (Ni-free) and Cr-N (Ni/Mn-free) high nitrogen stainless steels was investigated. Thermodynamic simulation of the redox reaction depending on process parameters was performed. As a result, the optimal ratio of aluminum to oxygen in the initial powder mixture to obtain the highest yield of metal product with minimal aluminum nitride contamination was predicted to be slightly greater than the stoichiometric ratio of 1.125. Microstructures of aluminothermic 26Cr1N and 23Cr9Mn1N steels, prepared taking into account the results of thermodynamic simulation, were investigated by X-ray diffraction, metallography, and transmission electron microscopy. The as-cast microstructure was a pseudo-pearlite (layered ferrite-nitride mixture) in 26Cr1N steel and a ferrite-austenite with signs of discontinuous austenite decomposition in 23Cr9Mn1N steel. After hot forging and subsequent water quenching from 1200 °C, the microstructure was fully austenitic in both steels. Tensile tests of quenched 23Cr9Mn1N steel showed a combination of high strength (ultimate strength of 1324 MPa) and ductility (elongation of 27 pct). The results illustrate that the aluminothermic casting process for producing high nitrogen steel is competitive with the commonly used methods, such as pressure electroslag remelting, both in terms of cost and mechanical properties of manufactured steel. |
Databáze: | OpenAIRE |
Externí odkaz: |