POINTS OF SMALL HEIGHT ON AFFINE VARIETIES DEFINED OVER FUNCTION FIELDS OF FINITE TRANSCENDENCE DEGREE

Autor: Dac-Nhan-Tam Nguyen, Dragos Ghioca
Rok vydání: 2020
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society. 103:418-427
ISSN: 1755-1633
0004-9727
Popis: We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the first author in the special case when K is a function field of transcendence degree $1$ . Furthermore, we obtain sharp lower bounds for the Weil height of the points in $V(\overline {K})$ , which are not contained in the largest subvariety $W\subseteq V$ defined over the constant field $\overline {k}$ .
Databáze: OpenAIRE