Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China

Autor: Ze-Xin Fan, Shankar Panthi, Achim Bräuning, Zhe-Kun Zhou
Rok vydání: 2018
Předmět:
Zdroj: Dendrochronologia. 47:1-9
ISSN: 1125-7865
Popis: Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.
Databáze: OpenAIRE