On additive properties of product sets in an arbitrary finite field
Autor: | Misha Rudnev, ALexey Glibichuk |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Journal d'Analyse Mathématique. 108:159-170 |
ISSN: | 1565-8538 0021-7670 |
DOI: | 10.1007/s11854-009-0021-4 |
Popis: | It is proved that for any two subsets A and B of an arbitrary finite field \( \mathbb{F}_q \) such that |A||B| > q, the identity 10AB = \( \mathbb{F}_q \) holds. Under the assumption |A||B| ⩾2q, this improves to 8AB = \( \mathbb{F}_q \). |
Databáze: | OpenAIRE |
Externí odkaz: |