On additive properties of product sets in an arbitrary finite field

Autor: Misha Rudnev, ALexey Glibichuk
Rok vydání: 2009
Předmět:
Zdroj: Journal d'Analyse Mathématique. 108:159-170
ISSN: 1565-8538
0021-7670
DOI: 10.1007/s11854-009-0021-4
Popis: It is proved that for any two subsets A and B of an arbitrary finite field \( \mathbb{F}_q \) such that |A||B| > q, the identity 10AB = \( \mathbb{F}_q \) holds. Under the assumption |A||B| ⩾2q, this improves to 8AB = \( \mathbb{F}_q \).
Databáze: OpenAIRE