Quantitative tests for stratigraphic cyclicity

Autor: D. G. Smith, R. J. Bailey
Rok vydání: 2008
Předmět:
Zdroj: Geological Journal. 43:431-446
ISSN: 1099-1034
0072-1050
Popis: Periodic Milankovitch (M-) orbital forcing provides an explanation for subjectively recognized short-term repetition of lithofacies-‘cycles’-in the stratigraphic record. Tests of this explanation often find no order in the lithofacies and/or no regularity in the recurrence of lithofacies. This does not disprove the influence of M-forcing, but a sedimentary response in terms of irregular M-forced ‘cycles’ is indistinguishable from one in which repetition of facies is not M-forced. Use of such cycles in time calibration is correspondingly suspect. Stricter, dimensional cyclicity invokes Sander's Rule, which suggests periodicity in sedimentation, for which M-forcing provides an obvious explanation. Time calibration on the basis of strict cyclicity thus appears more dependable. Objective tests for regular M-forced stratigraphic cyclicity commonly depend upon spectral analyses. Such tests are not unambiguous. Bilogarithmic thickness/frequency plots derived from objective layer thickness inventories (LTI) provide an alternative. Commonly, such plots show power-law relationships that preclude dimensional M-cyclicities. By contrast, a model data series that perfectly encodes the M-cyclic fluctuations in terrestrial insolation generates a strongly inflected, non-power-law LTI plot. Power-law plots result where the model data series is decimated by random hiatuses, with numbers and durations tuned to M-cycle frequencies. It seems improbable that natural data series record such tuning. The general absence of strict cyclicity in the M-frequency range is more likely to reflect the nonlinear response of sedimentary systems to cyclic M-forcing of insolation. Interestingly, when applied to the classically cyclic lacustrine Triassic sediments of the Newark Basin, USA, the LTI test suggests a decimated record, preserving some evidence of M-cyclicity. Copyright © 2008 John Wiley & Sons, Ltd.
Databáze: OpenAIRE