Range-Gated LIDAR Utilizing an LiNbO3 (LN)crystal as an Optical Switch

Autor: Chenglong Luan, Yingchun Li, Huichao Guo, Houpeng Sun
Rok vydání: 2023
DOI: 10.20944/preprints202304.0870.v1
Popis: In this paper, a range-gated lidar system utilizing an LN crystal as the electro-optical switch and a SCMOS (Scientific Complementary Metal Oxide Semiconductor) imaging device is designed. To achieve range-gated, we utilize two polarizers and a LN (LiNbO3) crystal to form an electro-optical switch. The optical switch is realized by applying a pulse voltage at both ends of the crystal due to the crystal's conoscopic interference effect and electro-optical effect. The advantage of this system is that low-bandwidth detectors such as CMOS and CCD (Charge-coupled Device) can be used to replace conventional high-bandwidth detectors such as ICCD (Intensified Charge Coupled Device), and time it has better imaging performance under specific conditions at the same. However, after using an electro-optical crystal as an optical switch, a new inhomogeneity error will be introduced due to the conscopic interference effect of the electro-optical crystal, resulting in range error of the lidar system. To reduce the influence of inhomogeneity error on the system, this paper analyzes the sources of inhomogeneity error caused by the electro-optical crystal and gives the crystal inhomo-geneity mathematical expression. A compensation method is proposed based on the above inho-mogeneity mathematical expression. An experimental lidar system is constructed in this paper to verify the validity of the compensation method. The experimental results of the range-gated lidar system show that in a specific field of view (2.6mrad), the lidar system has a good imaging per-formance, its ranging standard deviation is 3.86cm and further decreased to 2.86cm after com-pensation, which verifies the accuracy of the compensation method.
Databáze: OpenAIRE