Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential–Operator Equation with Spectral Parameter in the Equation and a Boundary Condition
Autor: | B. A. Aliev, V. Z. Kerimov |
---|---|
Rok vydání: | 2020 |
Předmět: |
Quadratic growth
0209 industrial biotechnology Partial differential equation General Mathematics 010102 general mathematics Mathematical analysis 02 engineering and technology Trinomial Differential operator 01 natural sciences 020901 industrial engineering & automation Quadratic equation Ordinary differential equation Boundary value problem 0101 mathematics Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | Differential Equations. 56:190-198 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266120020056 |
Popis: | In a separable Hilbert space $$H$$, we study the asymptotic behavior of eigenvalues of a boundary value problem for second-order elliptic differential–operator equations for the case in which the spectral parameter occurs in the equation quadratically and one of the boundary conditions is a quadratic trinomial in the same spectral parameter. We derive asymptotic formulas for the eigenvalues of this boundary value problem. An application of the abstract results obtained here to elliptic boundary value problems is indicated. |
Databáze: | OpenAIRE |
Externí odkaz: |