Sex-specific cell types and molecular pathways drive fibro-calcific aortic valve stenosis
Autor: | V Myasoedova, I Massaiu, D Moschetta, M Chiesa, V Valerio, M Bozzi, V Parisi, P Poggio |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Cardiovascular Research. 118 |
ISSN: | 1755-3245 0008-6363 |
DOI: | 10.1093/cvr/cvac066.141 |
Popis: | Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Fondazione Gigi e Pupa Ferrari ONLUS Background Aortic stenosis (AS) is the most common valve disorder characterized by fibro-calcific remodeling of valve leaflets. Recent evidence indicated that there is a sex-related difference in AS development and progression. Fibrotic remodeling is peculiar of women's aortic valve, while men's aortic leaflets are more calcified than in women. Purpose To assess aortic valve fibrosis (AVF) in a severe AS cohort using non-invasive diagnostic tools and determine whether sex-specific pathological pathways and cell types are associated with severe AS. Methods We have included 28 men and 28 women matched for age with severe AS who underwent Doppler echocardiography and cardiac contrast-enhanced computed tomography (CT) before intervention. The calcium and fibrosis volumes were assessed and quantified using the ImageJ thresholding method, indexed calcium and fibrosis volume were calculated by dividing the volume by the aortic annular area. Differentially expressed genes and functional inferences between women and men's aortic valves were carried out on a publicly available microarray-based gene expression dataset (GSE102249). Cell types enrichment analysis in stenotic aortic valve tissues was used to reconstruct the sex-specific cellular composition of stenotic aortic valves. Results We confirmed that women had significantly lower aortic valve calcium content compared to men, while fibrotic tissue composition was significantly higher in women than men. We identified that the expression profile of human stenotic aortic valves is sex-dependent. Pro-fibrotic processes were prevalent in women, while pro-inflammatory ones, linked to the immune response system, were enhanced in men. Cell-type enrichment analysis showed that mesenchymal cells were over-represented in AS valves of women, whereas signatures for monocytes, macrophages, T and B cells were enriched men ones. Conclusions Our data provide the basis that the fibro-calcific process of the aortic valve is sex-specific, both at gene expression and cell type level. The quantification of aortic valve fibrosis by CT could make it possible to perform population-based studies and non-invasive assessment of novel therapies to reduce or halt sex-related calcific aortic valve stenosis (CAVS) progression, acting in an optimal window of opportunity early in the course of the disease. |
Databáze: | OpenAIRE |
Externí odkaz: |