Plant defensin PvD1 modulates the membrane composition of breast tumour-derived exosomes
Autor: | Julia Skalska, Diana Gaspar, Grant McNaughton-Smith, Érica O. Mello, Miguel A. R. B. Castanho, Valdirene Moreira Gomes, Tiago N. Figueira, Filipa D. Oliveira |
---|---|
Rok vydání: | 2019 |
Předmět: |
CD63
Chemistry Plant defensin 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Microvesicles 0104 chemical sciences Cell biology Multiple drug resistance Crosstalk (biology) Cancer cell Extracellular General Materials Science 0210 nano-technology Defensin |
Zdroj: | Nanoscale. 11:23366-23381 |
ISSN: | 2040-3372 2040-3364 |
DOI: | 10.1039/c9nr07843f |
Popis: | One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosome-mediated anticancer action of PvD1, a potential nutraceutical agent. |
Databáze: | OpenAIRE |
Externí odkaz: |