Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces
Autor: | Siniša N. Ješić |
---|---|
Rok vydání: | 2009 |
Předmět: |
Convex analysis
Discrete mathematics Mathematics::General Mathematics General Mathematics Applied Mathematics Injective metric space Convex set General Physics and Astronomy Statistical and Nonlinear Physics Krein–Milman theorem Convex metric space TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Fréchet space Danskin's theorem Kakutani fixed-point theorem Mathematics |
Zdroj: | Chaos, Solitons & Fractals. 41:292-301 |
ISSN: | 0960-0779 |
DOI: | 10.1016/j.chaos.2007.12.002 |
Popis: | In this paper we define convex, strict convex and normal structures for sets in intuitionistic fuzzy metric spaces. Also, we shall prove a fixed point theorem for a wide class of non-expansive mappings defined on intuitionistic fuzzy metric spaces with convex structure. |
Databáze: | OpenAIRE |
Externí odkaz: |