Popis: |
Three cytoplasmic loops in the G protein-coupled receptor rhodopsin, C2, C3, and C4, have been implicated as key sites for binding and activation of the visual G protein transducin. Non-helical portions of the C2- and C3-loops and the cytoplasmic helix-8 from the C4 loop were targeted for a "gain-of-function" mutagenesis to identify rhodopsin residues critical for transducin activation. Mutant opsins with residues 140-148 (C2-loop), 229-244 (C3-loop), or 310-320 (C4-loop) substituted by poly-Ala sequences of equivalent lengths served as templates for mutagenesis. The template mutants with poly-Ala substitutions in the C2- and C3-loops formed the 500-nm absorbing pigments but failed to activate transducin. Reverse substitutions of the Ala residues by rhodopsin residues have been generated in each of the templates. Significant ( approximately 50%) restoration of the rhodopsin/transducin coupling was achieved with re-introduction of residues Cys140/Lys141 and Arg147/Phe148 into the C2 template. The reverse substitutions of the C3-loop residues Thr229/Val230 and Ser240/Thr242/Thr243/Gln244 produced a pigment with a full capacity for transducin activation. The C4 template mutant was unable to bind 11-cis-retinal, and the presence of Asn310/Lys311 was required for correct folding of the protein. Subsequent mutagenesis of the C4-loop revealed the role of Phe313 and Met317. On the background of Asn310/Lys311, the inclusion of Phe313 and Met317 produced a mutant pigment with the potency of transducin activation equal to that of the wild-type rhodopsin. Overall, our data support the role of the three cytoplasmic loops of rhodopsin and suggest that residues adjacent to the transmembrane helices are most important for transducin activation. |