Online Neural Architecture Search (ONAS): Adapting neural network architecture search in a continuously evolving domain. [Proposal]

Autor: Nathan Buskulic, Edward Bergman, Joeran Beel
Rok vydání: 2021
Popis: Neural Architecture Search research has been limited to fixed datasets and as such does not provide the flexibility needed to deal with real-world, constantly evolving data. This is why we propose the basis of Online Neural Architecture Search (ONAS) to deal with complex, evolving, data distributions. We formalise ONAS as a minimisation problem upon which both the weights and the architecture of the neural network needs to be optimised for the data up until a time $t_i$. To solve this problem, we adapt a DARTS optimisation process, associated with an early stopping scheme, by using the supernet optimised on previous data as a warm-up initial state. This allows the architecture of the neural network to evolve as the data distribution evolves while limiting the computational burden. This work aims at building the initial mathematical formalism of the problem as well as the development of a framework where NAS methods could be used to solve this problem. Finally, several possible next steps are presented to show the potential of this field of Online Neural Architecture Search.
Databáze: OpenAIRE