Design of software and hardware components for a six-degrees of freedom optical position sensor

Autor: F.N. Garcia
Rok vydání: 1997
Předmět:
DOI: 10.2172/623045
Popis: This report summarizes the evaluation of a fully compatible and operational data acquisition system for a six-degrees of freedom optical sensor (SixDOF). The SixDOF, developed at Lawrence Livermore National Laboratory by Charles Vann, is capable of tracking an object`s position in all its six degrees of freedom without any datum specification by means of two reflective surfaces mounted on the object. To make the SixDOF operational and thus validate its underlying physics, a signal processing system has been designed so that information from the sensor is transferred accurately and efficiently to a computer. In addition, a six-degrees of freedom positioning stage has been built in efforts to calibrate the sensor in real time. A crucial design constraint is the necessity to build the complete data acquisition system so that it be small and most importantly portable. The prototype of the SixDOF system proved to be capable of crudely detecting changes in the position of an object in all six spatial degrees of freedom. An accuracy of around 0.5 mm is estimated presently even though the position of the two reflectors on the object is seen to significantly influence the accuracy of the sensor. The resolution of the sensor is not quite understood yet because of uncertainties in the actual spot size of the laser, however, field of the view has been seen to increase as the resolution decreases. The decoupling (calibration) of the sensor data proved to be rather successful although some coupling still exists. This coupling, however, is almost certain to come from the crudeness in the alignment of the optics within the sensor.
Databáze: OpenAIRE