Method and analysis for determining yielding of titanium alloy with nonlinear Rayleigh surface waves

Autor: Lei Zhang, Zhiyuan Shen, Zheng Zheng Wong, Shuting Chen, Meysam Sharifzadeh Mirshekarloo, Kui Yao, Yifan Chen, Shifeng Guo, Huajun Liu
Rok vydání: 2016
Předmět:
Zdroj: Materials Science and Engineering: A. 669:41-47
ISSN: 0921-5093
DOI: 10.1016/j.msea.2016.05.077
Popis: Methods for determining yielding of titanium (Ti) alloy material with second harmonic Rayleigh ultrasonic wave are investigated. Both piezoelectric angle beam transducers and high frequency laser scanning vibrometer (LSV) are used to detect ultrasonic signals in the Ti alloy specimens with different plastic strain levels. Technical features and outcomes with use of piezoelectric transducers and LSV are compared. The method using piezoelectric transducers, with much higher signal-to-noise ratio than LSV, has been further improved by deploying two transducers with central frequencies corresponding to the fundamental and second order harmonic signals respectively to improve the testing reliability and accuracy. Both the techniques using piezoelectric transducer and LSV demonstrate consistently that the acoustic nonlinearity increases with plastic strain, and the second harmonic Rayleigh ultrasonic wave can be utilized for effective determination of yielding in Ti alloy. Our experiments further show that the acoustic nonlinearity increases gradually with plastic strain at small plastic strain level, and there is a more significant increase of acoustic nonlinearity when the plastic strain reaches a higher level. Microscopic investigations using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) are conducted for clarifying the relationship between the observed acoustic nonlinearity and micro-structural changes.
Databáze: OpenAIRE