A Reinforcement Learning Framework for Parameter Optimization in Elastic Optical Networks

Autor: Wolfgang Schairer, Bernd Sommerkorn-Krombholz, Bernhard Spinnler, Sebastian Kuhl, Stephan Pachnicke, Rui Manuel Morais, Rebekka Weixer
Rok vydání: 2020
Předmět:
Zdroj: ECOC
DOI: 10.1109/ecoc48923.2020.9333298
Popis: We present a reinforcement learning (RL) framework for maximizing the total capacity of a 51-channel transmission system, which runs magnitudes faster than a genetic algorithm (GA) based optimization. The generalization capabilities and performance of the RL framework are compared to results obtained with a GA.
Databáze: OpenAIRE