Battery Discharge forecast applied in Unmanned Aerial Vehicle

Autor: J. L. O. Torres, L. B. P. Nascimento, J. J. M. Sá Junior, João P. P. Gomes, Vandilberto Pereira Pinto, R. N. C. Almeida, Darielson A. Souza
Rok vydání: 2016
Předmět:
Zdroj: PRZEGLĄD ELEKTROTECHNICZNY. 1:187-194
ISSN: 0033-2097
DOI: 10.15199/48.2016.02.49
Popis: This paper proposes a comparative study methodology for the prediction of Li-Po (Lithium Ion Polymer) batteries discharge in UAVs (Unmanned Aerial Vehicles) using four approaches based on Artificial Neural Networks (ANNs) using Multilayer Perceptron (MLP) and Extreme Learning Machine (ELM) techniques, Polynomial Regression, and Kalman Filter (KF). The information estimates are important to assist in making decisions on which missions can be addressed to UAVs when supplied by such batteries. The data series for the experiments are obtained from tests carried out on a test bench.
Databáze: OpenAIRE