A Game with Optimal Stopping of Random Walks
Autor: | V. V. Mazalov E. A. Kochetov |
---|---|
Rok vydání: | 1998 |
Předmět: | |
Zdroj: | Theory of Probability & Its Applications. 42:697-701 |
ISSN: | 1095-7219 0040-585X |
DOI: | 10.1137/s0040585x97976556 |
Popis: | A two-person game $\Gm$ is considered which is specified by the following random walks. Let $x_n$ and $y_n$ be independent symmetric random walks on the set $E=\{0,1,\ldots,K\}$. Assume they start from the states a and b respectively $(1\le a y_{\sigma}$ then player~II pays player~I, say, \$1; if $x_{\tau} < y_{\sigma}$ then I pays II \$1; and if $x_{\tau}=y_{\sigma}$ then the outcome of the game is said to be a draw. The aim of each player is to maximize the expected value of hisincome. We find the equilibrium situation and the value of... |
Databáze: | OpenAIRE |
Externí odkaz: |