Influence of Pin Shape on Heat Transfer Characteristics of Laminated Cooling Configuration

Autor: Honglin Li, Fujuan Tong, Wenjing Gao, Lei Li, Zhonghao Tang
Rok vydání: 2019
Předmět:
Zdroj: Volume 5B: Heat Transfer.
DOI: 10.1115/gt2019-92055
Popis: The laminated cooling configuration can effectively enhance heat transfer and improve cooling effectiveness through combining the advantage of impingement cooling, film cooling and pin fin cooling. In this study, four laminated configurations with different pin shape including circular pin shape, curved rib pin shape, droplet pin shape and reverse droplet pin shape are numerically investigated. Extensive analysis are conducted within the blowing ratio range of 0.2–1.8 to reveal the influence of pin shape on heat transfer characteristics and cooling performance. Compared with circular pin shape, other three pin shapes can enable more complex internal flow field, which greatly affect the heat transfer performance. Among these shapes, the droplet pin shape presents the best capacity on improving heat transfer performance and distribution due to its stramlined shape and little upstream surface, especially at relatively high blowing ratio and the augmentation can be up to 7.91% under the blowing ratio of 1.7. Besides, results show that the cooling effectiveness can be enhanced by adopting curved rib pin shape and the enhancement monotonously increases as the blowing ratio increases. When blowing ratio is 1.7, the improvement can be 2.7%. The reason is that the large lateral blockage decreases the exhausted velocity and hence forms relative firm film coverage.
Databáze: OpenAIRE