Inhibition of Signaling Through the B Cell Antigen Receptor by the Protooncogene Product, c-Cbl, Requires Syk Tyrosine 317 and the c-Cbl Phosphotyrosine-Binding Domain

Autor: Thomas M. Yankee, Lakhu M. Keshvara, Sansana Sawasdikosol, Marietta L. Harrison, Robert L. Geahlen
Rok vydání: 1999
Předmět:
Zdroj: The Journal of Immunology. 163:5827-5835
ISSN: 1550-6606
0022-1767
Popis: The Syk protein-tyrosine kinase couples the B cell Ag receptor (BCR) to intracellular biochemical pathways. Syk becomes phosphorylated on multiple tyrosine residues upon receptor cross-linking. Tyrosine 317 is a site of phosphorylation located within the linker region of Syk that separates the amino-terminal, tandem pair of SH2 domains from the carboxyl-terminal catalytic domain. The amino acid sequence surrounding phosphotyrosine 317 matches the consensus sequence for recognition by the phosphotyrosine-binding (PTB) domain of the protooncogene product, c-Cbl. The overexpression of c-Cbl in DT40 B cells inhibits Ag receptor-mediated activation of the NF-AT transcription factor. The ability of overexpressed c-Cbl to inhibit signaling requires both Syk tyrosine 317 and a functional c-Cbl PTB domain. Mutant forms of Syk lacking tyrosine 317 exhibit an enhanced ability to couple the BCR to pathways leading to the activation of both NF-AT and Elk-1. Coimmunoprecipitation experiments indicate that Syk phosphotyrosine 317 and the c-Cbl PTB domain enhance, but are not required for, all interactions between these two proteins. In unstimulated cells, c-Cbl and Syk can be isolated in a complex that also contains tubulin. A mutant form of Syk lacking tyrosine at position 317 exhibits an enhanced ability to interact with a diphosphopeptide modeled on the immunoreceptor tyrosine-based activation motif of the CD79a component of the Ag receptor. These studies indicate that c-Cbl may contribute to the regulation of BCR signaling by modulating the ability of Syk to associate with the BCR and couple the receptor to intracellular signaling pathways.
Databáze: OpenAIRE