Accurate 3D-vision-based obstacle detection for an autonomous train

Autor: Johann Weichselbaum, Oliver Gebauer, Christian Zinner, Wolfgang Pree
Rok vydání: 2013
Předmět:
Zdroj: Computers in Industry. 64:1209-1220
ISSN: 0166-3615
Popis: In this paper we present a 3D-vision based obstacle detection system for an autonomously operating train in open terrain environments. The system produces dense depth data in real-time from a stereo camera system with a baseline of 1.4m to fulfill accuracy requirements for reliable obstacle detection 80m ahead. On an existing high speed stereo engine, several modifications have been applied to significantly improve the overall performance of the system. Hierarchical stereo matching and slanted correlation masks increased the quality of the depth data in a way that the obstacle detection rate increased from 89.4% to 97.75% while the false positive detection rate could be kept as low as 0.25%. The evaluation results have been obtained from extensive real-world test data. An additional stereo matching speed-up of factor 2.15 was achieved and the overall latency of obstacle detection is considerably faster than 300ms.
Databáze: OpenAIRE