Predicting postoperative coronal alignment for adult spinal deformity: do lower-extremity factors matter?

Autor: Nathan J. Lee, Michael Fields, Fthimnir M. Hassan, Scott L. Zuckerman, Alex S. Ha, Joseph M. Lombardi, Zeeshan M. Sardar, Ronald A. Lehman, Lawrence G. Lenke
Rok vydání: 2023
Předmět:
Zdroj: Journal of Neurosurgery: Spine. :1-12
ISSN: 1547-5654
Popis: OBJECTIVE The objective was to describe an intraoperative method that accurately predicts postoperative coronal alignment for up to 2 years of follow-up. The authors hypothesized that the intraoperative coronal target for adult spinal deformity (ASD) surgery should account for lower-extremity parameters, including pelvic obliquity (PO), leg length discrepancy (LLD), lower-extremity mechanical axis difference (MAD), and asymmetrical knee bending. METHODS Two lines were drawn on intraoperative prone radiographs: the central sacral pelvic line (CSPL) (the line bisecting the sacrum and perpendicular to the line touching the acetabular sourcil of both hips) and the intraoperative central sacral vertical line (iCSVL) (which is drawn relative to CSPL based on the preoperative erect PO). The distance from the C7 spinous process to CSPL (C7-CSPL) and the distance from the C7 spinous process to iCSVL (iCVA) were compared with immediate and 2-year postoperative CVA. To account for LLD and preoperative lower-extremity compensation, patients were categorized into four preoperative groups: type 1, no LLD (< 1 cm) and no lower-extremity compensation; type 2, no LLD with lower-extremity compensation (PO > 1°, asymmetrical knee bending, and MAD > 2°); type 3, LLD and no lower-extremity compensation; and type 4, LLD with lower-extremity compensation (asymmetrical knee bending and MAD > 4°). A retrospective review of a consecutively collected cohort with ASD who underwent minimum 6-level fusion with pelvic fixation was performed for validation. RESULTS In total, 108 patients (mean ± SD age 57.7 ± 13.7 years, 14.0 ± 3.9 levels fused) were reviewed. Mean preoperative/2-year postoperative CVA was 5.0 ± 2.0/2.2 ± 1.8 cm. For patients with type 1, both C7-CSPL and iCVA had similar error margins for immediate postoperative CVA (0.5 ± 0.6 vs 0.5 ± 0.6 cm, p = 0.900) and 2-year postoperative CVA (0.3 ± 0.4 vs 0.4 ± 0.5 cm, p = 0.185). For patients with type 2, C7-CSPL was more accurate for immediate postoperative CVA (0.8 ± 1.2 vs 1.7 ± 1.8 cm, p = 0.006) and 2-year postoperative CVA (0.7 ± 1.1 vs 2.1 ± 2.2 cm, p < 0.001). For patients with type 3, iCVA was more accurate for immediate postoperative CVA (0.3 ± 0.4 vs 1.7 ± 0.8 cm, p < 0.001) and 2-year postoperative CVA (0.3 ± 0.2 vs 1.9 ± 0.8 cm, p < 0.001). For patients with type 4, iCVA was more accurate for immediate postoperative CVA (0.6 ± 0.7 vs 3.0 ± 1.3 cm, p < 0.001) and 2-year postoperative CVA (0.5 ± 0.6 vs 3.0 ± 1.6 cm, p < 0.001). CONCLUSIONS This system, which accounted for lower-extremity factors, provided an intraoperative guide to determine both immediate and 2-year postoperative CVA with high accuracy. For patients with type 1 and 2 (no LLD, with or without lower-extremity compensation), C7–intraoperative CSPL accurately predicted postoperative CVA up to 2-year follow-up (mean error 0.5 cm). For patients with type 3 and 4 (LLD, with or without lower-extremity compensation), iCVA accurately predicted postoperative CVA up to 2-year follow-up (mean error 0.4 cm).
Databáze: OpenAIRE