COMPACT ORBITS OF PARABOLIC SUBGROUPS

Autor: Leonardo Biliotti, Oluwagbenga Windare
Rok vydání: 2021
Předmět:
Zdroj: Nagoya Mathematical Journal. 247:615-623
ISSN: 2152-6842
0027-7630
DOI: 10.1017/nmj.2021.14
Popis: We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra $\mathfrak {u}$ extends holomorphically to an action of the complexified group $U^{\mathbb {C}}$ and that the U-action on Z is Hamiltonian. If $G\subset U^{\mathbb {C}}$ is compatible, there exists a gradient map $\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$ where $\mathfrak g=\mathfrak k \oplus \mathfrak p$ is a Cartan decomposition of $\mathfrak g$ . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map $\mu _{\mathfrak p}$ .
Databáze: OpenAIRE