Low frequency interictal EEG biomarker for localizing seizures

Autor: Ben Brinkmann, Greg Worrell, Brian Nils Lundstrom
Rok vydání: 2021
Předmět:
DOI: 10.1101/2021.06.04.21258382
Popis: ObjectiveWe want to identify seizure onset zone (SOZ) from interictal EEG biomarkers. We hypothesize that a combination of interictal EEG biomarkers, including a novel low frequency marker, can predict mesial temporal involvement and can assist in prognosis related to surgical resections.MethodsInterictal direct current wide bandwidth invasive EEG recordings from 83 patients implanted with 5,111 electrodes were retrospectively studied. Logistic regression was used to classify electrodes and patient outcomes. A feed-forward neural network was implemented to understand putative mechanisms.ResultsInterictal infraslow frequency EEG activity was decreased for SOZ electrodes while faster frequencies such as delta (2-4 Hz) and beta-gamma (20-50 Hz) activity were increased. These spectral changes comprised a novel interictal EEG biomarker that was significantly increased for mesial temporal SOZ electrodes compared to non-SOZ electrodes. Interictal EEG biomarkers correctly classified mesial temporal SOZ electrodes with a specificity of 87% and positive predictive value of 80%. These interictal EEG biomarkers also correctly classified patient outcomes after surgical resection with a specificity of 91% and positive predictive value of 87%.InterpretationInterictal infraslow EEG activity is decreased near the SOZ while higher frequency power is increased, suggesting distinct underlying physiologic mechanisms. Decreased interictal infraslow activity may reflect the loss of neural inhibition. Narrowband interictal EEG power bands provide information about the SOZ and can help predict mesial temporal involvement in seizure onset. Together with interictal epileptiform discharges and high frequency oscillations, these interictal biomarkers may provide prognostic information prior to surgical resection.
Databáze: OpenAIRE