Popis: |
While machine learning (ML) models play an increasingly prevalent role in many software engineering tasks, their prediction accuracy is often problematic. When these models do mispredict, it can be very difficult to isolate the cause. In this paper, we propose a technique that aims to facilitate the debugging process of trained statistical models. Given an ML model and a labeled data set, our method produces an interpretable characterization of the data on which the model performs particularly poorly. The output of our technique can be useful for understanding limitations of the training data or the model itself; it can also be useful for ensembling if there are multiple models with different strengths. We evaluate our approach through case studies and illustrate how it can be used to improve the accuracy of predictive models used for software engineering tasks within Facebook. |