Phasma: An automatic modulation classification system based on Random Forest

Autor: Manolis Surligas, Kostis Triantafyllakis, Stefanos Papadakis, George Vardakis
Rok vydání: 2017
Předmět:
Zdroj: DySPAN
DOI: 10.1109/dyspan.2017.7920749
Popis: We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.
Databáze: OpenAIRE