A zeta function with respect to non-backtracking alternating walks for a digraph
Autor: | Iwao Sato, Norio Konno, Takashi Komatsu |
---|---|
Rok vydání: | 2021 |
Předmět: |
Numerical Analysis
Algebra and Number Theory Group (mathematics) Backtracking Mathematics::Number Theory 010102 general mathematics Digraph 010103 numerical & computational mathematics Expression (computer science) 01 natural sciences Riemann zeta function Combinatorics symbols.namesake Corollary symbols Discrete Mathematics and Combinatorics Geometry and Topology 0101 mathematics A determinant Mathematics |
Zdroj: | Linear Algebra and its Applications. 620:344-367 |
ISSN: | 0024-3795 |
Popis: | We define an alternating zeta function of a digraph D, and give its determinant expression. We present a decomposition formula for the alternating zeta function of a group covering of D. Furthermore, we introduce an alternating L-function of D, and present a determinant expression of it. As a corollary, we present a decomposition formula for the alternating zeta function of a group covering of D by its alternating L-functions. |
Databáze: | OpenAIRE |
Externí odkaz: |