Representation theory of symmetric groups and the strong Lefschetz property
Autor: | Yong-Su Shin, Seok-Jin Kang, Young Rock Kim |
---|---|
Rok vydání: | 2020 |
Předmět: |
Monomial
Pure mathematics Algebra and Number Theory Property (philosophy) Computer Science::Information Retrieval Applied Mathematics 010102 general mathematics Complete intersection Astrophysics::Instrumentation and Methods for Astrophysics Structure (category theory) Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Construct (python library) 01 natural sciences Representation theory Symmetric group 0103 physical sciences Computer Science::General Literature 010307 mathematical physics 0101 mathematics Quotient Mathematics |
Zdroj: | Journal of Algebra and Its Applications. 21 |
ISSN: | 1793-6829 0219-4988 |
DOI: | 10.1142/s0219498822500554 |
Popis: | We investigate the structure and properties of an Artinian monomial complete intersection quotient [Formula: see text]. We construct explicit homogeneous bases of [Formula: see text] that are compatible with the [Formula: see text]-module structure for [Formula: see text], all exponents [Formula: see text] and all homogeneous degrees [Formula: see text]. Moreover, we derive the multiplicity formulas, both in recursive form and in closed form, for each irreducible component appearing in the [Formula: see text]-module decomposition of homogeneous subspaces. |
Databáze: | OpenAIRE |
Externí odkaz: |