A Survey on Trajectory Data Management for Hybrid Transactional and Analytical Workloads

Autor: Keven Richly
Rok vydání: 2018
Předmět:
Zdroj: IEEE BigData
DOI: 10.1109/bigdata.2018.8622394
Popis: Rapid advances in location-acquisition technologies have led to large amounts of trajectory data. This data is the foundation for a broad spectrum of services driven and improved by trajectory data mining. However, for hybrid transactional and analytical workloads, the storing and processing of rapidly accumulated trajectory data is a non-trivial task. In this paper, we present a detailed survey about state-of-the-art trajectory data management systems. To determine the relevant aspects and requirements for such systems, we developed a trajectory data mining framework, which summarizes the different steps in the trajectory data mining process. Based on the derived requirements, we analyze different concepts to store, compress, index, and process spatio-temporal data. There are various trajectory management systems, which are optimized for scalability, data footprint reduction, elasticity, or query performance. To get a comprehensive overview, we describe and compare different exciting systems. Additionally, the observed similarities in the general structure of different systems are consolidated in a general blueprint of trajectory management systems.
Databáze: OpenAIRE