An image processing and machine learning solution to automate Egyptian cotton lint grading
Autor: | Oliver J Fisher, Ahmed Rady, Aly AA El-Banna, Nicholas J Watson, Haitham H Emaish |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Textile Research Journal. 93:2558-2575 |
ISSN: | 1746-7748 0040-5175 |
DOI: | 10.1177/00405175221145571 |
Popis: | Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique characteristics and grading requirements. Furthermore, the methodology to develop these classification models has been expanded to include image processing techniques that remove the influence of trash on color measurements and extract features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error associated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate where labeling errors occurred. |
Databáze: | OpenAIRE |
Externí odkaz: |