Experimental research on thermal transport properties of crystallized palladium-based alloys

Autor: Siyuan Cheng, Mingxiang Pan, Weigang Ma, Xuguo Shi, Xing Zhang, Weihua Wang, Guanglai Liu
Rok vydání: 2018
Předmět:
Zdroj: Frontiers in Energy. 12:121-126
ISSN: 2095-1698
2095-1701
DOI: 10.1007/s11708-018-0531-9
Popis: Palladium-based alloy is a kind of material with a high glass forming ability and can be easily formed into an amorphous state. After an annealing process, it can also be maintained at a crystallized state. To study the thermal and electrical transport properties of crystallized palladium-based alloys, the steady-state T-type method, standard four-probe method, and AC heating-DC detecting T-type method were used to measure the thermal conductivity, electrical conductivity, and Seebeck coefficient of crystallized Pd40Ni10Cu30P20 and Pd43Ni10-Cu27P20 alloys respectively. The results show that compared to amorphous samples, the thermal conductivity and electrical conductivity of crystallized palladium-based alloys are significantly higher, while the Seebeck coefficient is lower. The ratio of crystallized and amorphous thermal conductivity is higher for Pd43Ni10Cu27P20 alloy fiber which has a higher glass forming ability, while the ratio of electronic thermal conductivity almost remains constant for both alloy fibers. The results also show that the slope of electrical resistivity to temperature is a function of elemental composition for crystallized quaternary palladium-based alloy fibers. The sensitivity of thermal conductivity and electrical conductivity to the composition is high, while the correlation between Seebeck coefficient and composition is relatively weak.
Databáze: OpenAIRE